
Welcome from Ian Billingsley

'Feedback during the Software
Development Cycle'

Welcome from Ian Billingsley

 Over 16 years developing LabVIEW applications
 Aerospace, Formula One, Automotive, Subsea,
Government.
Certified LabVIEW Developer 2006-2013
Certified LabVIEW Architect since 2013

Presentation Overview

 Traditional software development models

 The cost of feedback delay

 Reducing feedback cycle time

 Practical applications in LabVIEW

 Conclusions

A traditional software model

The Waterfall Software model

Useful when:
 Requirements are clear
 Requirements do not change
 Customer is happy to wait

Problems:
 Long lead times
 Requirements evolution
 Waste
 Slow feedback cycle time

Hmm?

Just let me know your
exact requirements and

I will get started

Feedback is awesome!

The benefits of faster feedback

 Re-enforces learning

 Reduces project risk

 Requirements can evolve

with reduced impact

Discussion around software
development

Exponential cost of feedback delay

Reducing feedback cycle time

 Divide tasks horizontally
not vertically

 Build technology islands

 Frequent releases

 Requirements lead

development

Dividing the tasks example
 Objective – Build transport from A to B
 Release usable application frequently
 Make use of the feedback opportunity
 Iterate until customer is satisfied

Practical tips for LabVIEW development
Design application to facilitate change

 Low coupling & High cohesion modules

 Abstract variables into a configuration file

 “Feature Toggle” via configuration

 Ensure errors are logged (eyes

and ears of the application)

 Start with an engineering /

diagnostics interface

 Commit to building an executable

at each release

 Formalise feedback at each

release

– Bug sheet, Discussions,tune
requirements

Practical tips for LabVIEW development
Maximise opportunities for feedback

 Commit to fixing bugs at each
release not to building new features.

 this leads to code and fix

 Can appear unprofessional

 New features should be introduced
in the next version

 Increment version number each build

Practical tips for LabVIEW development
Keep control!

Summary

 Traditional software models are often not
optimised for software development.

 Fast Feedback re-enforces learning and
reduces project risk

 Feedback cycle time can be reduced by dividing
tasks horizontally not vertically

 Develop LabVIEW applications that facilitate
change and maximise feedback

Further information

 Examining the Agile cost of change

– http://www.agilemodeling.com/essays/costOfC
hange.htm

 Spotify Labs - labs.spotify.com

Thank you for listening

Questions?

