
Conan for LabVIEW

Installing dependencies per project

with an open-source package manager

sl.2

Agenda

❑What we want

❑Handling Dependencies
❑Per project

❑Avoid Relinking

❑Package Management
❑Existing processes

❑Package managers

❑What is Conan

❑Creating & deploying a package

❑Pro’s & Cons

sl.3

What this is (not)

❑Short story of our journey to find a solution to

handle dependencies the way we want

❑An overview of our findings and opinions

❑A demo of the current way of working

❑No tutorial on how to install or configure Conan

❑No in depth behind the scenes explanation

❑No intention to replace existing package managers

sl.4

What we want

❑Dependencies per project
❑Everything a project needs inside the project folder

❑Version controlled dependencies
❑Version numbers of dependencies in git

❑Not the dependencies themselves in git

❑Easy way to share/deploy
❑Between colleagues for collaboration

❑With CI systems for build automation

❑Same workflow for all developers

❑Open source (preferably)

❑Free (preferably)

sl.5

Dependencies per project

❑Everything a project needs inside the project folder
❑Make everything part of project? -> not realy re-use of code

❑Exclude re-use code from projects repo

❑But include “overview” of requirements and their versions
❑ e.g. vipc file

❑Different projects can have different requirements
❑Also different versions of those requirements

❑Not in a common folder like user.lib

sl.6

Avoid Relinking

❑Putting all dependencies in a support folder in your

project might change their relative path to each

other therefor they need to be relinked

❑We want to avoid the relinking

sl.7

Copying Source

sl.8

Copying Source

A and B need
to be

relinked to C

sl.9

Using ppl’s

❑Dynamically linked libraries

❑Pre-compiled

❑Support folder
❑auto-populating folder in A.lvproj

❑ignored by git

❑populated by package management

sl.10

Relinking Tool

❑Dependency Redemption

❑Composed-CI

❑How it’s done
❑List all dependent packages

❑Sort all dependent packages

❑Add all to temp project (least dependencies first)

❑Save all

https://bitbucket.org/composedsystems/composed-ci/src/master/

sl.11

Package Managers

Characteristic VI Package Manager NI Package Manager
G Package

Manager (GPM)
Installs With LabVIEW Yes Yes No
Created By JKI National Instruments MGI (Moore Good Ideas)
Year Released 2006 2017 2018
Open Source No No Yes
Language Written In G C# G
Free To Install Yes (Community & Free) Yes Yes
API Yes (Community & Pro) Yes Yes
Local repository management Yes (Pro) Yes Yes
Supports multiple LabVIEW versions
from a single package

Yes No Yes

Natively supports mass compile after
install

Yes No Yes

Scope of package installation
LabVIEW IDE or OS File

System
OS File System Per Project

Supports LabVIEW NXG No Yes No
Create palettes Yes No No
Dedicated package manager app Yes Yes Yes

https://labviewwiki.org/wiki/Package_Manager_Comparison

https://labviewwiki.org/wiki/VI_Package_Manager
https://labviewwiki.org/wiki/NI_Package_Manager
https://labviewwiki.org/wiki/Package_Manager_Comparison

sl.12

NIPM vs VIPM

Use... If you want to...

NI Package Manager •Install, update, repair, or remove NI software. For example, LabVIEW, modules,
toolkits, and drivers.

•Distribute deployed applications to your clients. For example, LabVIEW-built
executables, packed project libraries, source distributions, drivers, and LabVIEW Run-
Time Engine.

JKI VI Package Manager •Discover, install, and remove LabVIEW add-ons from repositories such as NI Tools
Network and JKI Package Network.

•Create and distribute LabVIEW add-ons to your clients. For example, libraries of
reusable VIs and development tools.

Choosing between the NI Package Manager and JKI VI Package Manager

https://www.ni.com/docs/en-US/bundle/labview/page/lvconcepts/nipm_vipm.html

sl.13

Existing Processes

❑Copy source

❑Use zip to distribute possibly with manifest file

❑Use git submodules

❑https://www.youtube.com/watch?v=iv7WwDgyb0U

❑Dependency Redemption presentation
❑https://www.youtube.com/watch?v=zQBPe0SmjRY

❑VIPM (with project Dragon), NIPM, GPM,…

❑Why don’t you try Conan?

sl.14

What is Conan?

❑Open source package manager for C/C++

❑Can handle binaries

❑Python package : pip install conan

❑Very good documentation

❑Decentralized, host packages on your own server
❑Local cache

❑Connects to remote server

❑Already used within Intersoft Electronics

sl.15

What is Conan?

❑Conan the Frogarian

❑Jfrog

❑conan frogarian

sl.16

How to use

❑Each repo must have a conanfile.py

❑Contains requirements

❑Contains extension or script overrides

❑Run on command line

❑Each command will execute several methods of

the conan class

sl.17

How to use

❑conanfile.py

sl.18

How to use

❑conan create .

➢ creates a package from the current git repo

❑conan install .

➢ installs all packages defined as requirement in

the correct version and also their requirements

❑conan upload * --all –r <remote> -c

➢ uploads all packages from the local cache to

the defined remote repository

sl.19

conan create .

❑set_name = LabVIEW project name

❑set_version = from latest git tag

❑requirements

❑package_id

❑system_requirements

❑source = git clone to cache\source

❑imports = install requirements@cache\source

❑build = run buildscripts in lvproj with G-CLI

❑package = copy build to cache\package\libs

❑package_info

sl.20

Version number

❑Get latest tag from git = x.y.z

git describe --tags --match "[0-9]*.[0-9]*.[0-9]*" --abbrev=0’

❑Get total number of commits until current

git rev-list –count <first_commit> <current_commit> = buildnr

❑ If current branch is master

➢ version = x.y.z.buildnr

❑ Any other branch

➢ version = x.y.z+1.buildnr

sl.21

conan install .

❑requirements

❑package_id

❑package_info

❑deploy = install requirements

❑copy from cache\package\libs to \support

sl.22

conan upload …

❑Upload from local cache to remote server

❑Supports Artifactory

❑Supports GitLab Package Registry

❑If install doesn’t find the package in the cache it

will try to get it from the remote

❑If only a recipe is available it will build the

package before installing it

sl.23

Pro’s & Cons

❑Per project dependencies under SCC

❑Same workflow for all developers

❑Free & open source with very good doc’s

❑Easy to use

❑No nice UI (yet)

❑Not the default LabVIEW way of working

❑No IDE integration (yet)

❑Internal reuse only, no community reuse

sl.24

What about project Dragon

❑JKI added this feature to VIPM

❑Managing virtual environments with VIPM

❑Will be released with LabVIEW 2023 Q1

❑Announced at GDevCON3

❑Create.vi -> NI and JKI partnering

https://www.youtube.com/watch?v=UGn7HVydt5I
https://create.vi/ni-and-jki-partnering-on-package-management-in-labview-d243b13ae3a6

sl.25

What about project Dragon

sl.26

Questions & Answers

Thank You For Your Time

Any questions?!?

